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Abstract We describe a second-order accurate sequential algorithm for solving two-phase multicomponent
flow in porous media. The algorithm incorporates an unsplit second-order Godunov scheme that provides
accurate resolution of sharp fronts. The method is implemented within a block structured mesh refinement
framework that allows grids to dynamically adapt to features of the flow and enables efficient parallelization
of the algorithm. We demonstrate the second-order convergence rate of the algorithm and the accuracy of
the AMR solutions compared to uniform fine-grid solutions. The algorithm is then used to simulate the
leakage of gas from a LPG storage cavern. The algorithm captures the complex behavior of the resulting
flow. We further examine differences resulting from using different relative permeability functions.
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1 Introduction

Modeling of subsurface flows that include a gaseous phase involves processes in which compressibility effects
can be important. For example, in modeling the leakage of gas from a LPG storage cavern, the density
of the gaseous phase decreases rapidly as it rises to the ground surface. Variation in pressure can also
be sufficiently large that the incompressible assumption is no longer valid for the entire domain being
considered. This usually happens when the size of the domain is very large, for example when modeling
the long-term migration of supercritical CO2 or aromatic contaminants. In the latter case, large pressure
difference may lead to sublimation and condensation of the aromatic contaminants in different regions of
the domain.

For an isothermal system, the formulation for a compressible multiphase system is usually a generaliza-
tion of its incompressible counterpart, see for example [6,8]. The difference lies in how the phase pressures
are treated in the formulations, which ultimately affect the design of the numerical algorithms. The approach
that we use solves for only one of the phase pressures since the other phase pressure can be determined
based on the the capillary pressure function, which is usually modeled as a function of saturation. Chavent
and Jaffré [6] and Amaziane et al. [2], on the other hand, use a global pressure formulation that removes
the nonlinear capillary pressure gradient term from the flux terms. In non-isothermal system, conservation
of energy must be taken into account, for which several formulations have been proposed in [13,26].

The formulation we use is based on a total velocity splitting approach that follows the compositional
formulation of Acs et al [1]. Analysis of this type of approach for isothermal systems is discussed in [23,
24] and for multiphase, compositional thermal systems in [26]. This formulation allows us to construct
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a sequential algorithm that can be accurately and efficiently parallelized. For an incompressible system,
this leads to the IMPES class of methods where an elliptic pressure equation is solved implicitly and the
component density equations are solved explicitly. In a compressible system, we need to solve a parabolic
pressure equation. Note that the operator splitting approach is less common for highly compressible system
and non isothermal system; implicit approaches are usually the norm [13].

We then use the total velocity formulation to construct an efficient algorithm that is implemented within
a block-structured adaptive mesh refinement framework. The existence of localized phenomena such as steep
concentration gradients and sharp fronts in multiphase flow motivates the need for dynamic gridding that
allows these phenomena to be accurately and efficiently resolved. Dynamic local grid refinement approaches
in subsurface flow are first considered by Heinemann [12] and Ewing et al. [11]. More recent papers [21,
9] discuss development of adaptive techniques in the context of unstructured grids. Related approaches
were developed by Nilsson et al. [16] who use a spatially anisotropic refinement strategy with no temporal
refinement and by Edwards [10] who uses a cell-by-cell refinement strategy. The approach to local refinement
considered here is based on block structured-grid adaptive mesh refinement. This type of approach, based
on the strategy introduced for gas dynamics by Berger and Colella [4],was first applied to porous media
flow by Hornung and Trangenstein [15] and by Propp [19]. Additional developments are discussed by
Trangenstein [22], Trangenstein and Bi [25], Hoang and Kleppe [14] and Pau et al. [18]. In this approach,
regions to be refined are uniformly subdivided in both space and time.

In subsequent sections, we give the formulation for a two-phase multicomponent compressible system.
We then describe a sequential algorithm on the AMR grid. Due to the parabolicity of the pressure equation,
the AMR algorithm is significantly different than the algorithm described in [18]. In particular, we solve
the system of equations on a composite grid instead of using the subcycling procedure described in [18]. As
a consequence, there is no refinement in time. We conclude with some convergence studies and as well as
a more complex example that considers 2D studies of a gas leakage problem.

2 Formulation

We consider two-phase multicomponent compressible flow in a porous medium under isothermal condition.
The porous medium is assumed to be compressible with porosity, φ = φ(p). We consider a system in which
each component only appears in one of the phases with no mass transfer between the phases. We let nαk
denote the mass of component k per unit pore volume in phase α. The assumptions above imply that nαk
is only nonzero for one value of α. We then define the mass per unit pore volume for each phase by

nαT =
X
k

nαk , α = 1, 2. (1)

and associated mass fractions Y αk = nαk /n
α
T .

We assume a Darcy flow with Darcy velocity for phase α given by

vα = −λα(∇pα − ραg), (2)

where the phase mobility, λα =
κkr,α
µα

, pα = p + pc,α is the pressure of phase α, and pc,α is the capillary
pressure.

For each phase we define a specific volume τα(pα, Y
α
k ) that represents the pore volume per unit mass

occupied by phase α at a given phase pressure and composition. Then uα = nαT τα is the fraction of the pore
volume occupied by phase α. The mass conservation equations are then given by

∂φnαk
∂t

+∇ · n
α
k vα
uα

= Sαk , k = 1, . . . ,K. (3)

To close the system we define an equation of state

U =
X
α

nαT τα =
X
α

uα = 1 (4)

We note that U depends on phase pressures and compositions; however, we will also view it implicitly as
a function of time. We also note that analytically, the uα correspond to saturations; however, we use a
distinct notation because in the fractional step numerical scheme presented later we will not require that
the uα discretely sum to one.

Our basic discretization strategy is based on a fractional step scheme that uses a total velocity splitting
approach [1,18]. In this approach we first derive an equation for a global reference pressure. From the
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solution of the pressure equation we then define a total velocity as the sum of the phase velocities. Finally
we rewrite the component conservation equations in terms of the total velocity.

To derive the pressure equation, we first differentiate (4) with respect to time and multiply the resulting
equation by φ to obtain

φτα
∂nαT
∂t

+ φnαT
∂τα
∂p

∂p

∂t
+ φnαT

∂τα
∂Y αk

∂Y αk
∂t

= 0. (5)

Here we have assumed pc,α is not a function of p, allowing us to write ∂τα
∂p = ∂τα

∂pα
∂pα
∂p = ∂τα

∂pα
. To obtain

the desired equation for p, we first derive several identities. First we derive an equation for the evolution of
the total mass in each phase by summing the component conservation equations over all the components
in that phase to obtain

∂φnαT
∂t

+∇ · n
α
T vα
uα

=
X
k

Sαk = Sα. (6)

From (3) and the definition of Y αk , we then obtain

∂φnαTY
α
k

∂t
+∇ · n

α
TY

α
k vα

uα
= Sαk

Y αk
∂φnαT
∂t

+ φnαT
∂Y αk
∂t

+
nαT
uα

vα · ∇Y αk + Y αk∇ ·
nαT
uα

vα = Sαk

Y αk

„
∂φnαT
∂t

+∇ · n
α
T

uα
vα

«
+ nαT

„
φ
∂Y αk
∂t

+
vα
uα
· ∇Y αk

«
= Sαk

Y αk (Sα) + nαT (φ
∂Y αk
∂t

+
vα
uα
· ∇Y αk ) = Sαk

nαT (φ
∂Y αk
∂t

+
vα
uα
· ∇Y αk ) = Sαk − Y

α
kS

α. (7)

In addition, we note that by definition

τα
nαT
uα

= 1 . (8)

Also,
∇τα = ταεα∇p+ ταβ̄

α
k∇Y

α
k ; (9)

where

εα =
1

τα

∂τα
∂p

, β̄αk =
1

τα

∂τα
∂Y αk

(10)

are, respectively, the phase compressibility and compositional derivative of the specific volume. We also
define the compressibility of the porous medium as

εr =
∂φ

∂p
. (11)

Each term in (5) can then be expressed in terms of (7)–(11):

φτα
∂nαT
∂t

= τα
∂φnαT
∂t

− ταnαT
∂φ

∂t

= τα

„
−∇ · vα

τα
+ Sα

«
− εr

∂p

∂t
, (12)

φnαT
∂τα
∂p

∂p

∂t
= φεαuα

∂p

∂t
, (13)

φnαT
∂τα
∂Y αk

∂Y αk
∂t

= ταβ̄
α
k

„
−n

α
T vα
uα
∇Y αk + Sαk − Y

α
kS

α
«
. (14)

Substituting these expressions into 5 leads to a pressure equation given by

(εr − φεαuα)
∂p

∂t
= −τα∇ ·

vα
τα
− β̄αk vα · ∇Y

α
k + ταS

α + ταβ̄
α
k (Sαk − Y

α
kS

α), (15)

If we express
nαT vα
uα
∇Y αk = ∇ · Y αk

vα
τα
− Y αk∇ ·

vα
τα
, (16)
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(15) can be rewritten as

(εr − φεαuα)
∂p

∂t
= −τα∇ ·

vα
τα

+ ταβ̄
α
k (−∇ · (Y αk

vα
τα

) + Y αk∇ ·
vα
τα

) + ταS
α + ταβ̄

α
k (Sαk − Y

α
kS

α)

= −τα(1− β̄αkY
α
k )∇ · vα

τα
− ταβ̄αk∇ · (Y

α
k
vα
τα

) + ταS
α + ταβ̄

α
k (Sαk − Y

α
kS

α). (17)

Substituting (2) into (17) then leads to a single equation for p that is parabolic.
We now rewrite the component density equations based on the total velocity splitting approach. Defining

the total velocity as
vT =

X
α

vα, (18)

the phase velocities are given by

v1 =
λ1

λT
vT −

λ1λ2

λT
{(ρ1 − ρ2)g −∇pc,2}, (19)

v2 =
λ2

λT
vT −

λ1λ2

λT
{(ρ2 − ρ1)g +∇pc,2}, (20)

where p2 = p1+pc,2, and p = p1. The component density equations for a two-component two-phase problem
can then be expressed as

∂φn1

∂t
+∇ρ1


λ1

λT
vT −

λ1λ2

λT
(ρ2 − ρ1)g

ff
= −∇ρ1

λ1λ2

λT
∇pc,2, (21)

∂φn2

∂t
+∇ρ2


λ2

λT
vT −

λ1λ2

λT
(ρ1 − ρ2)g

ff
= ∇ρ2

λ1λ2

λT
∇pc,2. (22)

For an incompressible system, (17) simplifies to

−τα∇ ·
vα
τα
− β̄αk vα · ∇Y

α
k + ταS

α + ταβ̄
α
k (Sαk − Y

α
kS

α) = 0

−∇ · vT + (τα∇
1

τα
) · vα − β̄αk∇Y

α
k · vα + ταS

α + ταβ̄
α
k (Sαk − Y

α
kS

α) = 0

−∇ · vT + ταS
α + ταβ̄

α
k (Sαk − Y

α
kS

α) = 0 (23)

since (1/τα)∇τα = β̄αk∇Y
α
k for incompressible flow. Thus we arrive at the velocity divergence condition in

the incompressible formulation.
For simplicity, we will primarily look at a two-component two-phase system. In this case, equation (15)

simplifies to

(εr − φεαuα)
∂p

∂t
= −τα∇ ·

vα
τα

+ ταS
α. (24)

Note that

−τα∇ ·
vα
τα

= −∇ · vT − (τα∇
1

τα
) · vα. (25)

In slightly compressible system, the magnitude of the second term 1
τα
∇τα · vα is usually small and can thus

be neglected [6,7]. However, for highly compressible system, the magnitude of this term is significant and
must be included in the formulation.

3 Numerical Approach

The numerical approach we propose is a modification of the algorithm we developed for incompressible
flow [18]. Similar to that algorithm, the component equations (21) – (22) and the pressure equation (24)
are solved using a sequential approach: the pressure equation is solved implicitly using a cell-centered
finite difference method and the mass conservation equations are solved using an explicit treatment of
advection based on a second-order Godunov method. In addition, the algorithm is constructed so that the
overall splitting approach is second-order accurate in time. We also use the same adaptive mesh refinement
framework we used in our previous work. This framework represents the solution on a nested hierarchy of
logically rectangular grids [5] that dynamically change with time based on a set of user-defined refinement
criteria. We use component density gradients of all the components as the refinement criterion in our
simulations, resulting in finer grids in regions where large concentration gradients are present.
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A major difference from [18] is that the pressure equation is now nonlinear and parabolic. This has direct
consequences for the entire AMR algorithm, leading to an algorithm that differs significantly from [18]. In
Section 3.1, we describe our AMR algorithm, focusing on the approximation of the pressure equation since
the approach for solving component conservation equations is similar to [18]. We ignore capillary effects
for notational convenience and describe the algorithm based on a spatial discretization of a 2D domain.
We then describe the time-stepping scheme in Section 3.2 that leads to second-order accuracy in time. The
spatial discretization uses a volume of fluid approach in which nkij denotes the average value of the vector

of component densities, n, over cell (i, j) at time tk; n and p are defined on cell centers while vT are defined
on cell edges.

3.1 AMR algorithms

The three main components of the AMR algorithm are:

1. Averaging and interpolation. Assuming the solutions at finer grid levels are more accurate, we average
the finer-grid solution down to coarser grid levels. During a regrid, we interpolate solutions from the
coarser levels to the finer levels when new fine grids are overlaid over coarser grids. We ensure the
interpolation procedure is conservative for cell-centered quantities and preserves divergence condition
for edge-centered quantities.

2. Pressure equation. The parabolic equation is solved implicitly on the composite grid.
3. Component density equations. A second order Godunov method is used to solve the hyperbolic part of

the component density equations on the composite grid. The solution at each level of the grid hierarchy
is solved independently and boundary conditions at finer levels are derived from the coarser levels. This
leads to a flux mismatch along the coarse-fine boundaries; this discrepancy is corrected by replacing the
coarse flux by the sum of the fine fluxes along those boundaries.

A common time step is used for all levels of grids, and it is limited by the CFL number computed based
on the finest grid. Note that we have considered schemes that follow the level-solve and synchronization
procedure of [18]. However, the associated computational overhead is not justifiable. We note that the
parallelization of the code is straightforward within the BoxLib AMR framework [20] used for the imple-
mentation. Nevertheless, it is not the goal of this paper to examine the parallel performance of the resulting
algorithm.

3.1.1 Averaging and interpolation

We define the averaging operator A`,c for cell-centered quantities, such as n` and p`, as

A`,cφ`+1 =
1

A`

X
r

A`+1φ`+1
r , (26)

where A` is the cell size at level `. Similarly, the averaging operator A`,e for edge-centered quantities, such
as v`T , is given by

A`,ev`+1 =
1

∆x`

X
r

∆x`+1v`+1
r . (27)

Both averaging operators are conservative.
We define an interpolation operator T `,c for the cell-centered quantities as

φ`+1 = T `,cφ`. (28)

Conservation interpolation will be used. Similarly, we define an interpolation operator T `,e for the edge-
centered quantities. For the velocity, we must ensure the divergence of the velocity is preserved to ensure
mass is conserved when the velocity is used in the advection equation. To achieve this a two-step procedure
is used. Along the common edge of fine and coarse cells, a simple linear interpolation is used: for example,
along the left edge,

uf
2i−1/2,2j

= uci−1/2,j −
∆xf

2

duci−1/2,j

dy
,

uf
2i−1/2,2j+1

= uci−1/2,j +
∆xf

2

duci−1/2,j

dy
.
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Similar formulae can be derived for other edges. For internal edges, simple interpolation is first used to
obtain an approximate ũf . A discrete projection is then used within each coarse cell to ensure uf conserves
the divergence. Let

uf = ũf +
∂φ

∂x
, (29)

vf = ṽf +
∂φ

∂y
. (30)

Then, we solve

∇2φ =
∂uf

∂x
+
∂vf

∂y
− d = r. (31)

where
R
Ωc d = D =

R
Ωc

∂uc

∂x + ∂vc

∂y , and ∇φ = 0 along the boundaries. Since the problem has no unique
answer and we are only interested in gradient of φ, we can arbitrarily fixed φ for a particular cell to zero.
For a reference ratio of 2, d = D/4, and the solution φ is given by0@ φ2i,2j

φ2i+1,2j

φ2i,2j+1

1A =

0@ −1 −1
2 −

1
2

−1
2 −

3
4 −

1
4

−1
2 −

1
4 −

3
4

1A0@ r2i,2j
r2i+1,2j

r2i,2j+1

1A ,

φ2i+1,2j+1 = 0.

3.1.2 Pressure solve

The pressure equation is spatially discretized using a cell-centered finite difference method and temporally
discretized based on the Crank-Nicolson scheme. We let DE→C and GC→E be the discretized forms of
the divergence and gradient operators where DE→C defines a cell-centered divergence in terms of normal
components of a vector field on cell faces and GC→E defines the normal component of the gradient on cell
faces from the values at cell centers. Using the splitting given by (25), the discretized pressure equation at
a particular AMR level is given by“

β`,k+1/2−∆t
2

“
DE→Cλ`,k+1

α GC→E + (τ `,k+1
α GC→E 1

τ `,k+1
α

) · λ`,k+1
α GC→E

””
p`,k+1 =

− φε
`,k+1/2
α u

`,k+1/2
α p`,k − ∆t

2

„
DE→Cv`,kT + {(τα∇

1

τα
) · vα}`,k

«
− ∆t

2

 
DE→C(λ`,k+1ρ`,k+1g) + (τ `,k+1

α GC→E 1

τ `,k+1
α

) · λ`,k+1
α ρ`,k+1

α g

!
, (32)

where

DE→C(
X
α

λαG
C→Ep) =

1

∆x
(F 1
i+1/2,j − F

1
i−1/2,j) +

1

∆y
(F 1
i,j+1/2 − F

1
i,j−1/2); (33)

X
α

(ταG
C→E 1

τα
) · (λαGC→Ep) =

1

∆x
(F 2
i+1/2,j + F 2

i−1/2,j) +
1

∆y
(F 2
i,j+1/2 + F 2

i,j−1/2), (34)

and

F 1
i+1/2,j =

 X
α

λα,i+1/2,j

!
pi+1,j − pi,j

∆x
,

F 1
i,j+1/2 =

 X
α

λα,i,j+1/2

!
pi,j+1 − pi,j

∆y
,

F 2
i+1/2,j =

 
1

2

X
α

λα,i+1/2,jτα,i+1/2,j
1/τα,i+1,j − 1/τα,i,j

∆x

!
pi+1,j − pi,j

∆x
,

F 2
i,j+1/2 =

 
1

2

X
α

λα,i,j+1/2τα,i,j+1/2
1/τα,i,j+1 − 1/τα,i,j

∆y

!
pi,j+1 − pi,j

∆y
.

We evaluate λα = κkr/µ at edges by taking the harmonic average of κ and arithmetic average of kr/µ. We
note that (33) is a symmetric operator while (34) is a nonsymmetric operator. In addition, these operators
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can be expressed as differences and averages of fluxes. Thus, only minor modifications need to be made to
the multilevel geometric multigrid solver used to implicitly solve the pressure equation on the composite
AMR grid. Details of the solver can be found in [17].

In the second term on the RHS of (32), the operator is expressed in term of vT and (τα∇ 1
τα

) · vα at
time k instead of p at time k. This choice implies that when grid changes, we interpolate and average
vT and (τα∇ 1

τα
) · vα at time k to the new grid, and evaluate the operator based on these interpolated or

averaged values. If we have expressed the operator in terms of p, the evaluation will involve taking the
gradient of the interpolated p at time k, which introduces a first order error to the solutions. In addition,
the reconstructed vT at time k may no longer have the correct discrete divergence. Interpolating these
gradient terms directly maintains their second-order accuracy, leading to an AMR discretization that is
consistent with the cell-centered finite difference procedure that gives a 2nd-order accurate gradient [3].

3.1.3 Component Density Equations

We use Godunov method to determine the advective flux in the component density equation. For the AMR
grid, we solve the equation level by level, with boundary conditions for finer levels derived from the coarser
levels. After we have traversed from the coarsest to the finest level, there will be a mismatch in the flux along
the coarse-fine boundaries; we replace the coarse fluxes by the sum of the fine fluxes. Note that we do not
need to compute solution on grid cells that are covered by finer grid cells. However, for the data structure
of the AMR framework we are using, it is algorithmically simpler to solve for the solutions of all grid points
on a particular level, and this simplification has no significant impact on the parallel performance. Greater
details can be found in [18].

3.2 Time-Stepping Scheme

The above spatial discretization is second-order accurate. To efficiently solve the above equations, we use
a sequential approach in which the pressure and component densities equations are solved consecutively.
This necessitates a multistep algorithm to achieve second-order accuracy in time. The algorithm can be
summarized as follows:

1. Determine pk+1,∗ with coefficients at time k+ 1 evaluated using n and p at time k. We then determine
the total velocity vk+1,∗

T from pk+1,∗.
2. Evaluate v

k+1/2,∗
T = 1

2 (vkT + vk+1,∗
T ).

3. Evaluate ρk+1,∗
α = ρα(pk+1,∗).

4. Based on v
k+1/2,∗
T , determine nk+1,∗ based on second order Godunov method.

5. Recompute coefficients at time k+ 1 based on nk+1,∗ and pk+1,∗, and determine pk+1. Recompute vk+1
T

.
6. Evaluate v

k+1/2
T = 1

2 (vkT + vk+1
T ).

7. Evaluate ρk+1
α = ρα(pk+1).

8. Determine nk+1 based on v
k+1/2
T .

In cases in which the spatial discretization error dominates the temporal discretization error, step 1 to 4
is sufficient to get a second-order accurate solution for nk+1. This will half the computational time needed
by the full algorithm.

In the algorithm presented here we advance the pressure and all of the component densities. Advanc-
ing all of the component density equations guarantees discrete conservation of mass for each component.
However, the system is then overdetermined and the time stepping scheme does not explicitly enforce the
constraint imposed by the equation of state. Thus, in this approach, we do not exactly satisfy the constraint
that the fluid fill the pore volume; i.e., the uα do not discretely sum to one. To ensure that the deviation
does not grow with time, we note that

φ
∂U

∂t
= φ

1− U(t)

∆t
; (35)

the above is obtained from a first order Taylor expansion in time of the equation of states [1,24]. This

introduces a relaxation term −φ1−U(t)
∆t to the right hand side of (32). The approach attempts to correct for

the discrepancy at the end of the previous time step. To avoid the introduction of this term from excessively
influence the solution, we multiply the term with a heuristic coefficient αr, where 0 ≤ αr ≤ 1.
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Table 1 L2 errors and convergence rates for n2, p and vT ; αr = 0, ∆p = 1 atm, and µ = 0.0178.

h, m ‖δnh2‖L2 rδnh2
‖δph‖L2 rδph ‖δvhT ‖L2 rδvhT

‖εh‖L2 rεh

1 1.34e-3 – 1.81e-3 – 7.36e-8 – 4.1e-7 –
0.5 3.35e-4 2.00 4.54e-4 2.00 1.78e-8 2.05 1.96e-7 1.06
0.25 8.37e-5 2.00 1.13e-4 2.01 4.42e-9 2.01 9,43e-8 1.06
0.125 2.09e-5 2.00 2.82e-5 2.00 1.11e-9 1.99 4.60e-8 1.04
0.0625 5.24e-6 2.00 6.99e-6 2.01 2.81e-10 1.98 2.27e-8 1.02

4 Results

4.1 Convergence studies

To demonstrate that the proposed algorithm is second-order accurate, we consider the displacement of
water by a gaseous phase. The densities, ρi and viscosities, µi of water (i = 1) and gas (i = 2) are

ρ1 = 1000 kgm−3, µ1 = 1 cP;

ρ2 = 2.33 + 10−5p kgm−3, µ2 = 0.0178 cP.

Here water is incompressible but the gas is highly compressible. The 2D simulation domain is 16 m × 16
m, with no-flow boundary conditions on the top and bottom boundaries, an inflow boundary condition
on the left boundary and an outflow boundary condition on the right boundary. The permeability of the
porous medium is 1 D and the porosity is 0.03. Gravity is ignored. The initial distribution of the water
saturation follows 0.5(1 + cos(πx/16), which is independent of y. A pressure difference of 1 atm is applied
in the x-direction. The problem then reduces to a 1D problem.

We first define the volume-averaged L2 norm of a finite volume solution uh as

‖uh‖L2 =

sP
i |uhi |2v

h
iP

i v
h
i

, (36)

where vhi is the volume of a single cell, and h is the mesh spacing, assuming the cells have unit aspect ratio.
Given discrete solutions uh at three grids with spacing h, 0.5h and 0.25h, the convergence rate can then be
approximated by

rδuh =
log(‖δuh‖L2/‖δu

0.5h‖L2)

log(2)
, (37)

where

δuh = u0.5h − uhi . (38)

The coarsest grid size used in this convergence study is h = 1 m, with a corresponding ∆t of 0.05 s. When
we reduce h by half, ∆t is halved as well. Table 1 and 2 show the convergence results for a single grid with
αr = 0 and 1 respectively, where αr is defined in (35). We clearly see the second-order convergence in n, p
and vT in both cases.

However, the constraint (4) is only well-satisfied when αr = 1. Let

εh = 1− Uh; (39)

‖εh‖L2 provides a measure of how much our solutions deviate from (4). Tables 1 and 2 show that ‖εh‖L2

for αr = 1 is 5 order of magnitude smaller than ‖εh‖L2 for αr = 0. In addition, the error has second order
convergence rate when αr = 1. When αr = 0, the convergence rate is only first order. The significance of
the relaxation term is well-illustrated by Figure 1. When αr = 0, εh increases linearly with time. However,
when αr = 1, εh decreases rapidly to machine precision.

Similar convergence behaviors are observed on the adaptive mesh. We introduce one level of refinement
to the base grid we used in the single-grid convergence analysis; the finer grid covers 37.5% of the domain
along the inflow boundary. Table 3 shows that we maintain the second-order convergence in n, p and vT .
In addition, the error ε is small and converges to machine precision as h→ 0.
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Table 2 L2 errors and convergence rates for n, p and vT ; αr = 1, ∆p = 1atm, and µ = 0.178.

h, m ‖δnh2‖L2 rδnh2
‖δph‖L2 rδph ‖δvhT ‖L2 rδvhT

‖εh‖L2 rεh

1 1.34e-3 – 1.81e-3 – 7.34e-8 – 4.67e-11 –
0.5 3.35e-4 2.00 4.52e-4 2.00 1.77e-8 2.05 6.63e-12 2.81
0.25 8.37e-5 2.00 1.12e-4 2.01 4.38e-9 2.01 1.17e-12 2.50
0.125 2.09e-5 2.00 2.78e-5 2.01 1.09e-9 2.01 2.55e-13 2.20
0.0625 5.24e-6 2.00 6.79e-6 2.03 2.75e-10 1.99 6.07e-14 2.07

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10 6 αr = 0 αr = 1×10−6

0.0

0.4

1.2

1.6

�1
−

U
� L

2

0.8

0.0 0.05 0.1 0.15
t

0 0.05 0.1 0.15
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5 x 10 14×10−14

0.0 0.05 0.1 0.15
t

0.8

1.0

1.2

1.4

�1
−

U
� L

2

Fig. 1 When αr = 0, ‖1− U‖L2 increases over time. When αr = 1, ‖1− U‖L2 decreases rapidly to machine tolerance.

Table 3 L2 errors and convergences rate for n, p and vT ; αr = 1, 2-level of grids.

h, m ‖δnh2‖L2 rδnh2
‖δph‖L2 rδph ‖δvhT ‖L2 rδvhT

‖εh‖L2 rεh

1 9.58e-4 – 1.87e-3 – 7.69e-8 – 4.67e-11 –
0.5 2.39e-4 2.00 4.67e-4 2.00 1.86e-8 2.05 6.63e-12 2.82
0.25 5.98e-5 2.00 1.16e-4 2.01 4.60e-9 2.02 1.17e-12 2.50
0.125 1.50e-5 2.00 2.87e-5 2.02 1.15e-9 2.00 2.57e-13 2.19
0.0625 3.75e-6 2.00 7.02e-6 2.03 2.93e-10 1.97 6.14e-14 2.07

In our second convergence study, we demonstrate that the proposed method is capable of resolving
a discontinuity along the saturation front. For this purpose, we change the initial saturation profile. The
domain is now saturated with water, and gas is injected from the left boundary. Figure 2 shows the
solutions for n1 and n2 after 5000 s at different resolutions. The current discretization approach captures
the discontinuity accurately with minimal numerical dispersion.

4.2 Uniform grid versus AMR grid

Here, we will compare results obtained on an uniform grid and an AMR grid. The setup in Section 4.1 is
used here. The domain is initially saturated with water. In addition, we consider the effects of gravity and a
heterogeneous permeability distribution shown in the left image of Figure 3. The mean of the permeability
distribution is 1D. We note that due to the large mobility ratio, the flow is unstable. With uniform perme-
ability, finite numerical errors in the geometric multigrid solver will induce the fingering behavior, resulting
in finger patterns that depend on the grid structure. By using a common heterogeneous permeability field,
the fingering patterns are then dictated by the prescribed permeability field and not by the numerical
errors. This allows us to compare solutions obtained on different grid structures. In Figure 3, we compare
the density of gas determined on a uniform grid with a grid size of 0.03125 m and an AMR grid with two
levels of refinement where the finest grid size is also 0.03125 m. No discernible difference between the two
solutions can be observed. The permeability is defined by cell-centered values at the finest level. At coarser
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Fig. 2 Convergence of the solutions with discontinuities. We note that solutions for h = 0.125 m are very close to solutions
for h = 0.0625 and are thus not discernible from the figure.

levels, the cell-centered values are given by the arithmetic mean of the values at the finest level and the
edge-based values are obtained from the arithmetic mean of the edge-based values at the finest level, which
are geometric means of cell-centered values adjacent to that edge.

The computational savings achievable by AMR is problem-dependent. An ideal problem that takes
full advantage of the AMR approach requires only high resolution in small region of the domain. The
computational savings decreases when the fraction of the domain covered by the finest level of grid increases.
In the current problem, the refinement criteria for the AMR grid is based on the gradient of n, and thus
the percentage of refined region grows over time as more water is being displaced by gas. At t = 1000 s,
the finest level covers 15.1% of the domain. This grows to 39.1% at t = 3000 s. The percentage reduction in
the computational cost, measured relative to computational cost of using the uniform grid, decreases from
79% to 62.3%. We note that the timing results are based on simulations performed on 2 CPUs. Admittedly,
reduction in the computational cost is not large for this small problem, but we expect AMR techniques to
be advantageous in more realistic applications in subsurface flow where the region of refinement is relatively
small compared to the entire domain.

4.3 A Density-driven problem

For a more complex example that demonstrates the features in the algorithm, we consider a simplified
model for the leakage of gas from an underground LPG storage cavern as described in [27]. LPG storage
caverns are commonly used to store natural gas since they are considered safer and more economical than
above-ground storage tanks. Theses caverns are usually located below the groundwater table. The natural
gas in the caverns forms both liquid and vapor phases. Since these caverns are usually unlined, containment
of gas is achieved by keeping water pressure outside the cavern higher than the liquid pressure inside the
cavern. This can be achieved if the cavern is sufficiently deep or if a water curtain system is installed.

We model the leakage from the top of the storage cavern when the gas-containment criteria are not
fulfilled. We limit the region of interest to a small domain surrounding the leak. The setup of the physical
model is shown in Figure 4. The simulation domain has width W and height H, and is initially saturated with
water. At the top boundary, we have an outflow boundary condition, and specify atmospheric pressure.
At the center of the bottom boundary, there is an opening of length ` that allows gas to leak into the
simulation domain and water to drain from the domain. The rest of the bottom boundary, and the left and
right boundaries have no-flow boundary conditions.

In this example, we have W = 64 m, H = 192 m and ` = 10 m. The porosity is φ = 0.03 and the
permeability is initially 1 × 10−14 m2 (10 mD). Initially, quadratic relative permeability function is used
and capillary effects are ignored. The properties of water and gas are given by (36). In the following sections,
we examine how the solutions vary with grid resolutions and permeability distributions. We also examine
the effects of using van Genuchten-Mualem relative permeability functions.
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Fig. 4 Problem setup for the leakage of gas from an underground LPG storage cavern.
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0 1 2 3 4
Fig. 5 Concentration of gas after 4e6 s for different level of refinements with a refinement ratio of 2. The effective resolutions
are 0.5 m, 0.25 m, 0.125 m, 0.0625 m and 0.03125 m from left to right.

4.3.1 Grid resolution

Similar to the problem in Section 4.2, we have gas displacing the water from the simulation domain al-
though the process is now driven by buoyancy forces. Fingering phenomena will occur even with a uniform
permeability distribution, as explained in Section 4.2. In this figure, we start with a base grid of h = 0.5m
and successively add layers of grid, up to 4 levels of grids; the refinement ratio between successive layers
of grid is 2. Since the grid structure is different when different levels of refinement are used, the finger-
ing structures differ from one another. However, the AMR grid dynamically adapts to ensure features of
the flow are fully captured. Figure 5 also serves to show that the algorithm can handle multiple levels of
refinement.

4.3.2 Solutions for different permeability distributions

The first set of permeability distributions we look at consists of an uniform distribution of 10 mD, and a
heterogeneous distribution with a mean of 10 mD and a relative perturbation of 0.3. Figure 6(a) shows the
solution at time 8 × 106 s. The overall behavior of the solutions are similar, indicating that the behavior
is driven by macroscopic feature of the flow. However, the instabilities along the gas column is more
pronounced in the heterogeneous case. Here, the AMR grids allow us to capture details of these instabilities.

In the second example, we assume the permeability abruptly changes from 10 mD to 1 D at y = 24m.
We again compare the homogeneous case to the heterogeneous case (a random distribution with a relative
perturbation of 0.3). As shown in Figure 6(b), our method captures the rapid change in the speed at
which the gas moves upward. This is achieved by accurately predicting the eigenvalues of the hyperbolic
system, allowing the algorithm to determine the timestep needed to capture this transition accurately
without leading to instability. This leads to a well-resolved transition zone along the interface where the
permeability changes. In this example, the heterogeneous permeability leads to a shorter breakthrough time
due to existence of a higher permeability pathway that is accentuated by the high permeability layer.

4.3.3 Effects of relative permeability function

Instead of the quadratic relative permeability function used in previous sections, we look at the results of
using the van Genuchten-Mualem relative permeability functions given by

kr,1 =
√
s1
“

1−
“

1− s1/m1

”m”2

, kr,2 = (1− s1)1/3
“

1− s1/m1

”2m
. (40)

The results obtained are significantly different from cases that use quadratic relative permeability function,
as shown in Figure 7. In the case of uniform permeability of 10mD, the gas propagates upward at a faster
rate; the gas in Figure 7(a) reaches almost the same point in space as the solution in Figure 6(a) in 1.5 ×106

s, which is more than 5 times faster. In addition, a random relative perturbation of 0.3 in the permeability
distribution leads to a even greater rate of upward propagation. The instability along the vertical column
of gas is also less pronounced.

In the case of a layered permeability, results in Figure 6(b) and Figure 7(b) are more similar since the
gas moves at a much faster rate once it reaches the layer with 1D permeability. Nevertheless, the use of
van Genuchten-Mualem relative permeability functions leads to shorter breakthrough time.
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(a) (b)
uniform heterogeneous uniform heterogeneous

κ = 10mD

κ = 1D

Fig. 6 Based on quadratic relative permeability function. Left: Concentration of gas after 8e6 s for a constant permeability
and a permeability function with the same mean but with a relative perturbation of 0.3. Right: Concentration of gas after
2e6 s for a 2-layer permeability distribution with uniform values and one with a relative perturbation of 0.3.

(a) (b)
uniform heterogeneous uniform heterogeneous

κ = 10mD

κ = 1D

Fig. 7 Based on van Genuchten-Mualem relative permeability functions with m = 0.5. Left: Concentration of gas after
1.5e6 s for a constant permeability and a permeability function with the same mean but with a relative perturbation of
0.3. Right: Concentration of gas after 3.8e5 s for a 2-layer permeability distribution with uniform values and one with a
relative perturbation of 0.3.
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5 Conclusions and future work

In this paper, we have presented a structured AMR algorithm for compressible two-phase flows in porous
media. The method is based on a total velocity splitting of the equations into a parabolic pressure equation
and a system of hyperbolic conservation laws for the component densities. The resulting system is discretized
using cell-centered differencing for the pressure equation and a second-order Godunov scheme for the
component conservation equations. A global timestep is used and the pressure equation is solved on the
composite grid. A relaxation term in the pressure equation ensures the equation of states is approximately
satisfied for long time integration. The convergence results demonstrate the second-order accuracy of the
approach. The AMR results also demonstrate the capability of the adaptive grid to capture complex flow
behaviors of two-phase compressible flow. We intend to extend the approach to more general multiphase
systems with mass transfer between phases and thermal effects in future work.
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